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The behaviour of a strong shock wave, which is initiated by a point explosion 
and driven continuously outward by an inner contact surface (or a piston), is 
studied as a problem of multiple time scales for an infinite shock strength, 
gsh/urn+m, and a high shock-compression ratio, ps/prn N 2y/(y- 1) = e-l % 1. 
The asymptotic analyses are carried out for cases with planar and cylindrical 
symmetry in which the piston velocity is a step function of time. The solution 
shows that the transition from an explosion-controlled regime to that of a 
reattached shock layer is characterized by an oscillation with slowly-varying 
frequency and amplitude. In  the interval of a scaled time 1 < t < ~ - ~ / ~ ( l + v ) ,  the 
oscillation frequency is shown to be (1  + v) (2n)-1t-@-Y)and the amplitude varies 
as t-a(3+”), matching the earlier results of Cheng et uZ. (1961). The approach to 
the large-time limit, el/(l+v)t+m, is found to  involve an oscillation with a much 
reduced frequency, in( 1 + v) e-it-l, and with an amplitude decaying more 
rapidly like s-%t-g4+3”); this terminal behaviour agrees with the fundamental 
mode of a shock/acoustic-wave interaction. 

1. Introduction 
The dynamics and structure of a blast wave, initiated by a point explosion 

and driven outward continuously by an inner contact surface, has been analysed 
recently by Cheng & Kirsch (1969). The analysis, which is asymptotic for a 
high shock-compression ratio, treats the interaction of a shock layer and an 
inner region, called the entropy wake of explosion. For a monotonic contact- 
surface motion which is faster than the shock motion of a pure (Taylor-Sedov) 
blast wave, the analysis shows that the shock layer will be caught up by the sur- 
face at large time, that is, the shock layer will ‘reattach’ to the surface, and that a 
decaying oscillation generally accompanies the reattachment. However, close 
examination reveals that the higher-order terms in Cheng & Kirsch’s (1969) 
expression cease to be valid at a large time. In  the present study, we treat the 
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large-time oscillatory problem as one with multiple time scales and analyse in 
detail the transition to reattachment for the plane and cylindrical cases in 
which the piston velocity is a step function of time, as illustrated in figure 1. 
The corresponding problems with spherical symmetry and with initial density 
stratification are treated in subsequent work (Moh 1971). 

Similar oscillatory behaviour was identified earlier by Cheng et al. (1961), in 
the analysis of the equivalent problems of hypersonic flows past blunted wedges 
and cones using a rather crude Newtonian model. Although an oscillation is 

t 

0 
Y 

FIGURE 1. A wave diagram showing a blast wave driven outward by a contact surface 
expanding from the origin of the blast. In the sketch, t is the time and y is the distance 
from the spatial origin of the blast. 

not apparent in the well-known work of Chernyi (1959) (see, for example, Mirels 
1962, Cox & Crabtree 1965, Guiraud et ul. 1965, and in particular, pp. 363-364 
of Hayes & Probstein 1966) a distinct wavy pattern can be identified by both 
asymptotic and numerical analyses as noted recently by Schneider (1968). In a 
study of the downstream asymptotic behaviour of inviscid hypersonic flows, to 
be discussed more specifically later in $7, Ellinwood (1967) reports that, for a 
blunted wedge or cone, a whole family of eigensolutions, each with a distinct 
characteristic frequency, is admissible to his model flow. However, the result 
cannot be considered as evidence of oscillation in solutions to problems with 
prescribed piston motions, since the eigensolutions are infinite in number. The 
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main objectives of the present analysis are to arrive at  a Newtonian solution 
valid a t  large (and all) time, and to clarify the issue on the oscillation. 

From the theoretical gas-dynamics viewpoint, the problem under study is of 
interest in that it furnishes for the first time examples wherein the history of 
reattachment of a Newtonian shock layer can be analytically delineated. The 
analysis is also of interest as an example in the method of multiple time scales 
applied to partiaZ differential equations, not treated in standard works (Van 
Dyke 1964; Cole 1968, ch. 3). A hydrodynamic model involving an explosion 
in a spherically stratified atmosphere has been proposed by Parker (19 63, pp. 
92-112) for the sudden solar corona expansion (see Goldworthy 1969). A similar 
oscillation in Parker’s model may be anticipated at large time, if the model 
remains valid. Wavy shock patterns a t  large time or distance can develop 
even in cases in which the contact-surface motion is not prescribed a priori, 
such as being found in a study of the combined bluntness and boundary-layer 
displacement effecti in an axisymmetric hypersonic flow (Cheng 1969), in which 
the contact surface is replaced by the boundary-layer outer edge.? 

To conserve space without sacrificing clarity, most analytical details are 
presented for the piston problem in the planar case. The corresponding solution 
to the oylindrical case can only be sketched briefly. In  the next section, the 
nature of the large-time problem is described; the basic construction and the 
proper variables for the principal transition region are introduced and studied 
in $3; the analysis of the piston problem in the planar case is presented in $54 
and 5; the corresponding analysis of the cylindrical piston problem is summarized 
in $6; and the final results of the two analyses are discussed in $7. 

2. Basic equations and nature of the large-time problem 
2.1. The exact model problem 

Following the basic formulation of Cheng & Kirsch (1969), it is assumed that 
there is one shock of infinite strength separating the disturbed and the un- 
disturbed uniform regions; that the fluid motion is (inviscid) particle-isentropic; 
that the gas is calorically perfect; and that immediately after the explosion, 
the field is described by the constant-energy solution. 

The differential equations governing the model explosion problem, specialized 
to spatially symmetric motion in one, two, and three dimensions, can be written 

where y, p, p, v and y are distance from the blast centre, pressure, density, 
velocity, and specific-heat ratio of the gas, respectively; the index v takes on 

?Flows past concave (as well as certain convex) slender bodies in the hypersonic 
strong-interaction regime also exhibit similar behaviours under the Newtonian approxi- 
mation, even in the absence of an entropy wake and/or entropy layer. The latter’s role is 
taken up in this case by the low-density hypersonic boundary layer. An example of this 
kind isnoted recently by Stollery (1970), to which a two-timing analysis is also applicable. 
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0,  1 and 2 for planar, cylindrical and spherical symmetry, and the subscript co 
refers to the uniform initial state. The independent variables t and y* are, 
respectively, the time and a Lagrangian co-ordinate. The trajectory of a particle 
in the physical t ,  y plane may then be described by y( t ,  y*) with y* signifying the 
particle ordinate y when the particle crosses the shock (see figure 1). The outer 
boundary conditions are furnished by the Rankine-Hugoniot condibions which 
for an infinite shock strength and with the shock ordinate written as y = ysh(t), 
are 

(2.2) 
2 Y+l 

p = -  PrnyZh, p = ~ 1 P m ,  Y = YSh(t) = Y*, 
Y+1 Y- 

where the dot stands for the time derivative. 
The boundary condition at the inner contact surface is 

Y =y,(t) at Y* = 0 (2.31 

if the motion of the contact surface is prescribed. In  the case analysed in detail 
below, ye cc t for t > 0. 

The system (2.1)-(2.3) admits a particular solution which approaches the self- 
similar constant-energy solution in the limit t -+ 0, i.e. 

ysh N At2/(3+,), as t - t  0, (2.4) 

where A is a constant of integration, provided y,./t2/(3+v)30 as t+0. The 
specification of the initial energy release E, determines A and the particular 
solution desired for t > 0. 

2.2 .  The Newtonian theory and non-uniformity 

The analysis of Cheng & Kirsch (1969) made under 

e = (y-  1)/2y < I 

dealt primarily with a rkgime in which the field between the shock and the 
piston is occupied in most part by a highly stratified low-density region - the 
‘entropy wake’. This rkgime, or period, may be referred to as the ‘explosion- 
controlled regime ’ in that the initial energy release dominates the energy 
balance of the flow (although the field cannot be generally described by the self 
similar constant-energy solution). Matching of the solutions yields a relation 
bebween the surface pressure and the shock co-ordinate, called ‘ pressure-volume 
relation’, in each order of the approximations. With the pressure furnished by 
the Busemann formula for the leading order, and a similar formula for the next, 
the relation leads to an ordinary differential equation for each coeecient in the 
shock-co-ordinate expansion 

Y y,/b = Y , ( ~ ) + B Y ~ ( ~ ) + B ~ Y ~ ( ~ A ) +  ..., (2.5) 

where 3 t/r, and b and7 are properly chosen length and time scales, respectively. 
Underlying the analysis is the use of a time scale (with k, = 1, 277 and 471. for 
v = 0, 1 and 2,  respectively) 

7 = [pa kv:,b(3+4/2(1 + Y) ~ ~ ~ 1 4 ,  (2.6) 

which ensures that all dimensionless variables including Y belong to the unit 
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order in the explosion-controlled r4gime. For obvious reasons, the regime 
t" = O( 1 )  will be alternatively referred to as the ' finite-time period'. In  subsequent 
analysis, the cap in the symbol t" will be omitted for convenience. 

For the special case yc cc t ,  we may set b/r = yc; the contact surface may then 
be written as = yc/b = t. For this case, the finite-time analysis (Cheng & 
Kirsch 1969) gives the oscillatory behaviour at large t 

- E{B, t2(3+54 sin [2t;t(1+4 + $,I + . . .} + o[&a(9+11~)], (2 .7)  

where B, is +( 1 + Y ) ~ A , ,  and the constants A,  and 4, can be quite accurately 
inferred from numerical integrations in the leading approximations (Kirsch 1969), 
giving A ,  N 0.72, q5 N 79" for Y = 0 and A ,  N - 1.08 and q5 = 76" for v = 1. 
The corresponding behaviour for Y may be inferred from the pressure-volume 
relation. Clearly from (2.7), the finite-time analysis cannot give a uniformly 
valid expansion in e for an unlimited t .  

2.3. Two transitions to reattachment 

Equation (2 .7)  reveals readily that a non-uniformity of the kite-time analysis 
occurs in the period t = O [ E - ~ / ~ ( ~ + ~ ) ] .  An asymptotic solution for this period, in 
turn, leads to a breakdown in a later period t = 0 [ ~ - 4 ( l + V ) ] ,  as will be evident 
from subsequent analyses. For reasons to become obvious later, the first period 
of non-uniformity will be designated as the 'incipient transition period', and 
the second as the 'principal transition period '. These two non-uniformities may 
be seen as the consequence of a frequency modulation-a weak time dependence 
of the oscillation frequency. This can best be illustrated by a closer examination 
of (2 .7 ) ,  which will also clearly bring out the motivation for introducing the more 
appropriate scalings. 

Under the stipulation that the non-uniformity arises primarily from a fre- 
quency modulation, (2.7) may be interpreted as either of 

@c - 1 N - ( 1  + v)2Aot-%3+4 COS {2tN+V) + q5, - + € t Z ( l + V ) } ,  ( 2 . 8 ~ )  

@c - 1 N - ( 1  v)2A,t-a3+V) cos ( [ 2  - %t(l+V)] &'+')+ $o}. (2 .8b )  

It is apparent that in the period etf(l+Y) = O ( 1 )  the modulation in the frequency 
gives rise to a unit-order phase shift, though its effect on the frequency itself is 
negligible. Equation ( 2 . 8 ~ )  is in fact the correct leading approximation to the 
surface pressure perturbation for the incipient transition period where 

Its  alternative form (2.8b),  on the other hand, suggests obviously a breakdown 
of the incipient transition solution at  ~ t ( l + ~ )  = O( 1 )  where the oscillation frequency 
is no longer close to that of cos [2t4(l+V)]. It may be noted in passing that the 
second non-uniformity may also be inferred from a comparison of the thicknesses 
of the shock layer and the entropy wake in the Cheng & Kirsch (1969) analysis; 
the two thicknesses become equal a t  e t ( l + V )  = O ( 1 ) .  

It is essential to point out that, to the leading order, the solutions of pertur- 
bation quantities for the finite-time period can be matched directly to those for 

€t#(l+V) = O(1). 
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the principal transition period, as subsequent analysis will confirm, and that, 
to the leading order, the latter contains the incipient transition solutions.-f 
For the sake of conserving space, the formal analysis for the incipient transition 
period will be deleted from 333 to 6. 

2.4. Two irreducible time scales 

Equations ( 2 . 8 ~ ~ )  and (2.8b) suggest that the oscillation period in both transitions 
belongs to the same order as that of C O S [ ~ & ~ + ~ ) ] ,  i.e. O[t?~(l-~)], which is much 
shorter than the incipient transition period by a factor of O(E*),  and than the 
principal transition period by a factor of O(e4). Thus, associated with each 
transition period, there will be two irreducible, (asymptotically) distinct time 
scales. A proper description of the solution must therefore admit both t’ime 
scales simultaneously. The suitable scale and the form of expansion for p may be 
inferred from (2.7) for either period (under suitable time scales noted above), in as 
much as a direct matching of the principal transition and finite-time solutions is 
anticipated. Forms for Y and other variables may be inferred in a similar manner. 

The dynamics of the system during a short interval comparable to th.e smaller 
time scale is, of course, dominated by a nearly harmonic oscillation; however, 
the weak feed-back built up over a long period comparable to the larger time 
scale is sufficient to alter completely the oscillatory pattern. These facts are 
reflected in the method adopted by this study, which employs two time variables 
as in Cole & Kevorkian (1963, pp. 113-120) and Cole (1968). The procedure 
permits one to solve first the problem with the slow time variable held frozen, 
and to remove subsequently the non-uniformity associated with the ‘fast event’ 
through exercising the slow variable. 

3. Basic construction and the proper variables of the principal 
transition period 

From the foregoing discussion, we anticipate that the shock movement in 
the principal transition period is described by two variables, t and a relatively 
slow one Z = el/(l+v)t. A time change in the flow variable may then be attributed 
to two sources, e.g. dY/d t  = aY/i%+s1/(l+”)8Y/aZ. However, the two partial 
derivatives may have magnitudes different from the order unity, and this fact 
would lead to incorrect ordering in the asymptotic analysis. A relevant example 
is given by Y = cos [w@)  ti(l+u)], which leads to 

a y p t  = O[U y&J- l ) ]  = 0[,(1-v)/Z(l+v)] Q 0(1) ,  

a YpZ = O[w’( f )  Yti( l+q = O(s-4). and 

However, a suitable transformation of the fast variable suffices to keep the 
partial derivatives bounded, as demonstrated in works of Kuzmak (1959) and 
Cole (1968).$ Although the required transformation for the fast variable may be 

t A detailed analysis of the incipient transition period, similar to that enunciated in 
$$3 to 6 has been carried out. 

$ The transformation ds/dt =f (Q in Kuzmak and Colo’s analyses can not be directly 
applied to the present problem. 



Reattachment of a shock layer 247 

determined in the course of the analysis, it is expedien6, in view of the foregoing 
example and (2.7), to assume a form s = w ( f )  t@+Y) for the new swift variable. 

The solution structure must take into account the different entropy levels 
which exist in the field. Therefore, in analysing the transition period, we shall 
retain the two flow regions in Cheng & Kirsch’s (1969) analysis so as to identify 
particles which have been involved in the earlier period, and introduce, in 
addition, an outer shock layer to accommodate newcomers. Hence the basic 
construction of the principal transition solution consists of three decks corres- 

and exp [ - 10(1/e)]], as shown in table 1. 
The form of Lagrangian variables used for the intermediate and inner regions, 

Y* and 5 = ( Y$+y /~)2e ,  with c~ = 2 + (4 In 2) e + . . . , are the same used by Cheng & 
Kirsch (1969) for their shock layer and entropy wake. The last column of the 
table indicates the relative physical thickness of the three regions, to be confirmed 
in 54.3. 

ponding to three ranges of the Lagrangian variable, Y, = y*/b = O(e--l/(lfV) ), O(l) ,  

Relative 
Fast Slow Lagrangian thickness 

variable variable variable 
Outer (shock layer) S W(;)&+V) ; ,l/(l+”t 7 Ell(l+V) y* O(1) 

Inner (entropy wake) S z < z (Yl;t”/U)ZE O(1) 

Intermediate 
(inner shock layer) S f y* o[El/(l+V) 1 

TABLE 1. The basic construction and the independent variables 
of the principal transition period 

We remark in passing that the multiple-scale method could be applied to the 
present problem for a range O( 1) < t < O[e-l/(l+V)] which is wider than the period 
t = O[S-”(~+~)] considered. However, inclusion of the finite-time period would render 
the analysisunnecessarily cumbersome. In the subsequent analyses, whichexclude 
the range t = O( l), the initial condition is therefore replaced by thematching with 
the large-time limit of the finite-time solution corresponding to (2.7). 

4. Structure of the principal transition period for yc cc t ,  v = 0 

is analysed. 
4.1. The outer region 

Substitution of t = Z/el/(l+v’ into (2.7) and corresponding equations for other 
flow variables, with v = 0, leads to the following form of perturbation solutions 
for the outer region 

In  this section and 55, the large-time planar piston problem, i.e. yc cc t ,  v = 0, 
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All perturbation quantities denoted by an overbar, and their derivatives, will 
be assumed to be of unit order in this period. With s and t as the fast and the slow 
variables, the first and second time derivatives may be expressed, respectively, as 

where s1 is another slowly-varying function related to w as 

LI = w + 2tdw/dt. (4.3) 

Equations (4.1), (4.2) and the shock condition (2.2) suggest expansions in 
ascending powers of s& e.g. 

= po (s, t ;  7) + dpl (8, t ;  7) + €4j iz (8, t"; 7) + €2P3 (8, f, 7) + . . . . (4.4) 

We shall seek uniformly-valid expansions of this form for an unbounded s, and 
for f and 7 in their unit-order ranges.t 

With the first of (4.1), the shock location Y* = Y reads 

7 = f+€(l+f)+€%F, (4.5) 

the required boundary condition at the shock may be reduced to one at 7 = 8: 
- 

} (4.6) 

] (4.7a) 

Po = 0, PI = 1, p 2  = nt-qos, p3 = "%4,,, 
po = pl+ 1 = pz = p3 = 0, yo = y1 = y2 = y3 = ... = 0. 

- -  

Applying (4.1)-(4.3) to the equations of motion (2.1), we have 

[q+yyilSs+ 4xpi, = 0 

Fz + yzIss + ~ x P Z , ,  = E(F + yo)s - 4 x K  + Y ~ ) ~ ~ I  x-+~x/& 
(i = 0, I), 

y. 27 +pd  = [p i -p& = 0 (i = 0,1,2), (4.7b) 

where the subscripts s and 7 signify partial differentiations and x is a new slowly- 
varying function introduced to replace f 

(X)+ = tsjn = t4/[2t(dw/df) + w ] .  (4.8) 
Eliminating ( Y  + y) from ( 4 . 7 ~ ) ~  we arrive at a system of de-coupled, linear 

hyperbolic equations in the variables s and 7 for the perturbation pressure field 
- 

} (4 .94  
p$ss-4xPi7,, = 0 (i = 0, I), 
Pzss - 4xF2,, = [Pos - 4x%sxl (dxldf) x-4 = f @,7, XI, 
- 

with the outer boundary condition at 7 = Q 2 x  
- 

Po = 0, jil = 1, p2  = Y?)x-B. (4.9b) 

Hence, with the slow variable appearing as a parameter, the pressure field is 
basically one in the classical acoustic theory.$ We note, in view of (4.7a), that 

t Although the solutions in their final forms necessarily belong to a class of 'general 
asymptotic expansions' (Erd'elyi 1961, Kaplun 1967) usage of such notion is avoided in 
the solution procedure of the multiple-scale techniques. 

$ Terms appearing in (4.9a) can all be generated from an acoustic equation. This is not to  
say, however, that the reduced problem can be explicitly solved by standard techniques. 
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the particle accelerations in the outer region no longer follow closely that of the 
shock as they do in a standard (non-linear) Newtonian theory. 

The formulation for the pressure field at this stage is incomplete because of 
the lack of an inner boundary condition. With the energy equation, (4.7b), and 
the shock boundary conditions, we may relate the density, the particle position 
and velocity to the pressure field through 

(4.10) 1 
where, as in y*, the subscript * in the second-order density correction refers to 
the condition at the shock when the particle in question first emerges behind it, 
therefore [rOs]* is a function of 7 only. 

The formal solution to the acoustic equation of the leading order, which 
satisfies the shock condition, is 

= p0 = P(5 - 2-1x-47; 2) - P(s + 2-1x-47 - Px4; x). (4.1 1 a) 

Through (4.10), we may relate the particle ordinate and velocity to the function 
P(5; x) 

P(E; x) d5, (4.1 1 b )  

'uo = P(~-2-1x-47;x)+P(~+2-1x-~?- ~ ' ~ ~ ; ~ ) - ~ P ( S - ~ ~ ~ X B ; X ) .  ( 4 . 1 1 ~ )  

Using ( 4 . 1 1 ~ )  and (4.11b) in the equation of motion (4.7a), and integrating 
twice with respect to the fast variable, we have 

(4.11 d )  

where the constants of integration A and B are functions of x. The determination 
of P(E; x), A and B requires an inner boundary condition. 

The forms of the first-order corrections, Fl, etc., remain the same as (4.11), 
except that a numeral one must be added to the right of (4.11 a) for the pressure, 
that the same be subtracted for the density, and that a term (7 - Q2x) must be 
added to the right of (4.11b) for the particle co-ordinate. Although the second- 
order pressure correction is not of immediate interest, its uniformity is crucial 
to the determination of the leading-order solution, as previously noted. An 
analysis of the second-order problem is therefore carried out below. 

It is expedient to write the equation governing j i2 as 

(4.12) 

where x = s - 2-1x-37; f =- s + 2-lx-47. A particu1a.r integral can be readily 
written whiah could however contain terms unbounded like s2 and s. It turns 
out that the apparent divergence at this stage can be avoided by adding suitable 

az  - 
4 -- P, = f(5, 7; x) = P(Z, 2; XI, ax ax 
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homogeneous solutions. One may thus arrive at a solution satisfying both (4.12) 
and the shock condition (4.9b), which is bounded throughout the period 
8 = O(1): 

PpZ = P ~ ( Z , X ) - P ~ Z ( ~ - - ~ X ~ ; X ) + G ( Z , Z ; X ) - G ( = Z - - ’ X ~ , ~ ; X )  

+4P(X- Q2x*; x ) + A ( ~ ) x - * ,  (4.13) 

where P2(z; x) designates a homogeneous solution for F2,  and the last two terms 
result directly from the outer boundary condition. The function G(z, E ;  x) is the 
particular solution 

- - d 2-2 

835 
x (.. ( z ;  x) + Px (2 - Qyf; x) - P’(Z - nzx*; x) -& ( Q 2 X t )  + ~ 

I 1 
x [P’(x, X) - P’(2 - Qzx4; x)] + - [Px(; x) + P(z - a2x*; x)] , (4.14) 

where the prime on P signifies the partial derivative with respect to the first 
argument, and the subscript x, the partial derivative with respect to the second 
argument of P. This form of particular solution is chosen so that G vanishes at 
the shock and remains finite for unbounded s, as long as r,f, P, P‘and Px remain so. 

4x 

4.2. The intermediate and inner regions 

In  order to match with the solution of the outer region, and with that of the 
shock layer in the earlier period, it is necessary to assume for the intermediate 
region [Y, = O( l), refer to table 13 perturbations of the following form 

(4.15) I pT2/p, b2 = 1 + E ~ P ,  Ep/pm = j5, 
(9 - Y,,)/b = - Z +  Ezh(S, f) + ~ g ,  

(W - $,h) T/Eb = - 1 + €6, 

where the double overbarred quantities will be taken to be of unit order. We 
again seek expansions in ascending powers of €2. Noting that Y* in this region 
is an order E higher than that in the outer region, it follows from (2.1) that 

= P(s, 0 ;  x; E )  up 
to the third-order correction. The density is determined from the particle 
isentropic relation p = Fz2[1 + O ( e f ) ] ,  where p* is d Y / d t  at Y = Y* = O(1). The 
particle ordinate may then be integrated as ?j = I dY, + g(s, x; E )  + O ( E ~ ) .  
Matching the outer limit of with the inner limit of jj of 3 4.2 determines h(s, x) 
and g(s, x; E )  in terms of the expansions of y, so that we can write 

= O ( E ) ;  hence, matching with the outer pressure gives 

y /b  = t + 1 + E ~ [ F ~  + g0]7+0 +E[T~ + yl],+, + e$[FpZ + g2]7j0  

-.Im ( Y$ - 1) dY* + o(a), (4.16) 

where the last term is an indefinite integral. The existence of the ?j expansions 
in the limit 7 -+ 0 can be verified to the second-order corrections on the basis of 
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the result from 54.1. Note that Y’, hence the integral, depends only on the 
shock motion in the earlier (finite-time) period. According to (2.7), 

IY$-ll  = O(Y,k) 

as Y*-+co, therefore, the integral in (4.16) exists in the upper limit. In  the 
inner limit, Y*+O, Y’ becomes infinite like 2YG1 (Cheng & Kirsch 1969), and 
the integral of (4.16) becomes 

(4.17) 

The last integral of (4.17), with F.P., the finite part, applied to both limits of 
the integral, defines a thickness of the intermediate layer of which the mean 
location may be identified with the first line on the right of (4.16). 

In  view of the independent variables s, f and g of table 1, and the identification 
of the inner region with the entropy wake, we anticipate the perturbation 
quantities in the inner region to take the following forms: 

pT2/pmb2 = 1 +€a@, cp/PmQ1’2E)-1 = p , )  
(4.18) 

with all tilde quantities taken to be of unit order. It follows from the equations 
of motion that the @ expansion can be directly matched to the expansion of 3, 
hence p in the limit 7 --f 0. The particle-isentropic condition then yields 

y/b - t = y”, rv/b = 1 + E&, 

p = [l +€q3]’-“/[1+ O ( E 2 ) ] ,  

which gives the particle displacement 

y/b = t + 5{1+ (2 In 2) E - e*m0 +dp1 + dp2+ ...I,,}, (4.19) 

Comparing (4.19) in the limit <-+ 1 with (4.16) in the limit Y,+O shows that 
where the inner boundary condition y” = 0 at g = 0 has also been satisfied. 

matching of the two inner regions in y can be established provided 

Equations (4.20), which involve only the inner limit 7 + 0  of the outer solution, 
are therefore the inner boundary conditions for the P’s desired (for subsequent 
discussion, the result for the third-order correction is also included). With (4.20), 
matching of the two inner regions in other flow variables is readily verified. 

Adopting Cheng & Kirsch’s (1969) definition of the outer-edge ordinate for the 
entropy wake, Y,, the four equations shown in (4.20) can be combined to yield 

( p -  1)  +$(j5- 1)2+ (5 - t - 1) + i(5- t - 1)2 = 0 ( € 2 ) ,  (4.21) 

which, in the transition period, agrees with the pressure-volume relation derived 
previously for the explosion-controlled rhgime. From a mechanics viewpoint, 
(4.20) is interesting in that the inner region, if being looked upon as an elastic 
body, responds to the external pressure change according to Hooke’s law. 
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5. Final analysis of the principal transition period 
5.1. Reduction to an integral-diflerence equation 

Substitution of (4.11a), (4.11b) and (4.11d) into the first of the pressure-volume 
relations (4.20) give a linear integral-difference equation 

P(s;x)-Pfs- Q2x4;x)+2$/sP(5;x)dc 0 

+ 2 ~ * / ~ - “ ~ * P ( 5 ;  x) d [ +  A(x)  s + B(x) = 0, (5.1) 

which implies a differential-difference equation (D.D.E.) for P(5; x) 
P”(s;x)-P”(s-Q~x~;x)+~~~P’(S;X)+~~*P’(S- Q’X&;X) = 0, ( 5 . 1 ~ )  

where, as before, the prime signifies a differentiation with respect to the first 
argument. 

Equation (5.1) admits a solution sinusoidal in s, for an unboundeds, of the form? 

P(s;x)  = C(x)eias+ D(x), (5.2) 

provided that ~ X * / C G  = tan [&aiPx*] (5.3) 

and that A = - 4x*D, B = 2~&[!2~x&D-i(2C/a)]. (5.4) 

We observe that, in order to match with the oscillatory behaviour (2 .7) ,  a 
in (5.2)-(5.4) must be real. More important is the fact that cx must, be independent 
of x, otherwise partial x derivatives of P would be unbounded. Since SZ2x = f, 
the requirement (5 .3)  may be alternatively written as 

t = p[tan-lp-nn], p = 2x*/[al, (5.5) 

where tan-l,u refers to the principal value of the arc tangent, and n is an integer 
including zero. For reason to be given below, only the principal branch of the 
solution (n = 0)  is used. Since SZ = w + 2tdw/df, (5.3) or (5.5) yields a differential 
equation for the slow function w(%) needed for the transformation t --f s. This gives 

whichis independent of 01. and completely defines as = w,(Z)t* in (5.2). For small 
f, ,u t3, (5.6) then yields lalu N 2, thus recovering the dominant oscillatory 
behaviour of (2.7). It must be pointed out that, omitted from (5.6) is a constant 
of integration, inclusion of which would have resulted in a phase shift belonging 
to the order €4 which has no counterpart in (2.7). Not considered in (5.6) are the 
branch values of p(t) other than n = 0, which would, however, give rise to an 
unwanted behaviour P N C exp [ f: i2t4 In f] + D for small t. 

t We note that if 8 = 0(1), a complete solution to (5.1) would require a knowledge of 
the initial data specified over the interval -fl2xt < s < 0, and that even for an un- 
bounded s, a formal proof of the uniqueness of a bounded solution is not available (see 
Bellman & Cooke 1963). The form of (5.2) assures, nevertheless, that P a n d  all its partial 
derivatives, are finite for an unbounded s. 
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The slow functions C(x)  and D(x) remain undetermined. An examination of 
(4.11) reveals, however, that the slow function D(x)  of (5 .2)  can be left arbitrary, 
since it never appears in solutions representing physical quantities. 

The corresponding results for the next order are of the same forms, except 
that the terms [ Q2$ - 1 - F.P. som Yz dY*] 

have to be added to the right of (5 .1)  and the second of (5.4). 

5.2. h'ecuhr terms and final solutions 

To expedite the determination of C(x) ,  we may differentiate the second and 
third of the pressure-volume relation (4.20) twice with respect to s, so that 

- 
131s + (71 + &)SS = Pzss + C S S  + YZSS = 0 (7 -+ 0) f 

The acceleration terms may be eliminated through the equations of motion 
(4.7a), and the first of (4.20). This results in the inner boundary conditions at 
q -+ 0 involving the l>'s alone 

(5 .7 )  
- 
plSs - 4xr)I7 = 4xP2?] - (Pos - 4 x ~ ~ ~ , ~ )  x - W x l d 0  = 0, 

which, through (4.9a), may be written alternatively as 
- - 
P11/7-1111/ = l>Qq-P21/ = 0, (7+0)* (5.7a) 

Applying (5.7) to the results of $4.2,  we arrive at equations comparable to 
the D.D.E. ( 5 . 1 ~ )  

(5 .8 )  } 
Pi - Pi, + 2xqp; + Pi,) = 0, 

P;-P;,+2x4(P;+P;,) = W(s;x ) ,  

where the prime, as before, stands for differentiation with respect to s, and the 
subscript r signifies a retarded s, e.g. P, = P(s-  Q 2 ~ t ;  x). The forcing function 
W(s;  x) depends on the leading-order solution P , t  i.e. on P = C ( x )  eias+ D(x) ,  
and may be expressed as 

with 
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Hence the forcing function in the D.D.E. consists of two terms, with one being 
independent of s, and the other being proportional to eias. The first term gives 
a particular solution proportional to s, and the second leads to resonant solution 
proportional to s eias. Therefore, the second-order correction would be un- 
bounded with s, unless W vanishes identically. The last provision requires 

(5.10) 

Integrating (5.10) with respect to the slow variable x,  which except in (5.6) has 
remained dormant up to this stage ( ! ), gives the required form of C(x)  and D(x)  
for the uniformity of the expansion (3.4) with respect; to the unbounded s 

dDldX = 0, f (x) dCldX + J(x) C = 0. 

(5.11) 

where Do and a are constants of integration, to be determined presently. 
Inspection of (5.31, (5.6) and (5.10) shows that aw, 2/a2, Qh2, f l a 3 ,  J ~ E ,  G 

and D, hence P, are invariant with respect to a except for a dependence on its 
sign. It follows that, in terms oft  and t", C(x) has only two forms, say, C+(t") and 
C-(t"). The entire family of solutions for - 00 < a! < cc are represented by 

p = P+(t; f) + P-(t; t )  = C+(t") eiwi(t)tt + c-@) e-iui(f)t* + D 0' (5.12) 

In  the inner limit f + O ,  with x N $a2t", R N Zla, f- 16x*+0(x2),  and 
J N 20xg+O(x), (5.11) gives 

C*(t) N g [1+ O(fd)], 
(5.13) 

where C$ and C; are the constants of integration (replacing a )  for C+ and C-, 
respectively. With (5.13), (4.11a) yields the perturbationpressurein thelimit Z+ 0 

- 2 i 
p N - (c$ exp [i(2t4 + in-)] + ~ i e x p  [- i(2tf + in-)]) (1 - (q/t")) (1 - [ t 3 / e p  + . . . . 

(5.14) 

This is to be compared with the large-time limit (t  3 00) of the finite-time solution 
(Cheng & Kirsch 1969) corresponding to (2.7), written in terms oft ,  f and p ,  

p - - ((A,/%) cos (2t4 + $o)  + B, [Z3/si.]* sin (Zts + #o) + . . .> [I - (7/Z)]. (5.15) 

A common domain of validity exists for (5.14) and (5.15) in the range e < 8 < €4 
(for 0 < q < t" and an unbounded s) where matching identifies 

= $A, eWo+fn), C; = iAo  e-Wo+$n). (5.16) 

) f2 

- 

The function P(s; x) is now completely determined and can be written as 

P(s; x) = (A,/@) e-K(p)sin ( lals- cr+ 4,) (5.17) 

where, as before, p is the inverse oft" = p tan-lp, and 
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With (5.17) and (4 .11a) ,  we arrive at  the complete pressure fieldp in the transi- 
tion period, written as a function of t and Z, 

pa = -A,(e-K@)/p*) cos{ul(~)tf+q5,,)sin{tan-1y[l- (q/Z)]), (5.18) 

where wl(Z) has been defined in (5.6). Corresponding solutions for other flow 
quantities may be obtained through (5.17) and (4.11). 

- 

5.3. Xmatl and large time behaviour 

The foregoing analysis gives a valid description (under the Newtonian approxi- 
mation) of the transition from an explosion-controlled regime to the final 
reattachment of the shock layer. Bewuse of the two-time character of the 
solution in wl(Z) tf, application of (5.18) to the physical problem (with st sub- 
stituting Z) reveals that the range of Z < 1, as well as that of i? % 1, contain in 
themselves several rather distinct stages. This observation should have been 
apparent from the form of @ given in (5.14) for the inner limit Z - t  0; namely, the 
behaviour 

?s - - (AO/W COS $ 0 )  [I- (q/t)l, (5.19) 

does not hold for all Z < 1, its validity, according to (5.14) requires Z < E ) .  For 
t = O(&, noting that o1 - 2-i?/9, the argument under the cosine in (5.18) 
becomes [2tI + $o - @/9d], where the third term inside the bracket contributes to 
a unit-order phase shift and therefore cannot be omitted. It is apparent that the 
departure from the explosion-controlled r6gime at small t must involve a t  least 
three distinct stages: E < i? < €4, Z = O ( d )  and E* < Z < 1. The departure in p is 
small in the first stage, is not small (but mainly in the form of a phase shift) in 
the second stage, and, in the third stage, both frequency and damping rate vary. 

The stage at Z = O(E--*), i.e. t = O(%), coincides with the incipient transition 
period mentioned in ss2.3 and 2.4. It is important to point out that an asymptotic 
analysis of this period in the leading order, based on a slow-time scale of the order 
E-Q, recovers precisely ( 2 . 8 ~ )  and the phase shift noted above. This confirms the 
statement made earlier that the incipient transition solution is contained in 
the principal transition solution (at least for the leading approximations for 
p ,  Y ,  etc.). 

For Z 9 1 ,  one has p N 2Z/7r and 

(5.20) 

Owing to the two-time character of the solution, the transition at large t" again 
gives rise to a number of distinct stages. The last stage of transition to the limit 
Z-tm, according to (5.18) is 

I K - - +ln,u++.p. ~ ( m )  + O(p-3), 
t f ~ ,  - +n1np++~+o(p-3) .  

1 
pa N - (&r)zAa e-p.p.K(m) cos {7r7/22}, (5.21) 
- 

which, to be sure, requires e4p3 B 1, i.e. dP % 1. One sees from above that, 
even towards the end of the transition, the oscillation persists and the damping 
rate remains algebraic. But both frequency and amplitude are reduced at  rates 
much faster than those for small Z [compare (5.21) with (5.19)].  
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6. The problem of an expanding cylinder (y, cc t ,  Y = 1) 

In  this section, the corresponding cylindrical problem will be presented. 
Much of the detail will be forsaken to conserve space; only major differences 
from the plane case will be emphasized. 

From the large-time behaviour of the finite-time solution, e.g. (2.7), and the 
form of independent variables given in table 1 in $ 3  the following expansions 
are assunied for the outer region. 

(6.1) I (y,,/b)-t = 1/(2t) +E(t/2)+EFO+€~Fl+ ..., 
(p72)/(pmb2) = 1 +s~p0+sj5 ,+  ... , 
(y - y,,)/b = E i ( 7 2  - f"/(2f) + €go + dgl + . . . . 

It is noted that the perturbations progress in 4 powers of E ,  instead of powers 
as in the plane case. The expansions for p and v can be easily inferred. 

With the expansions (6.1), the exact problem (2.1) can be manipulated t,o 
yield the equations for the pressure perturbations 

where rl = 7 2 ,  xi 3 f/Ql =- f / [ f (dw/dZ)  + 01. These equations are analogous to 
(4.9a), except that the perturbation pi in the cylindrical case is influenced by the 
non-linear effect In  terms of the characteristic variables z1 = s -rl/(2xl) 
and f, = s +q1/(2x1), the solution of po can be readily given in terms of a known 
function Q 

(Po = Q ( z i , f ) - Q ( ~ 1 - f ~ / ~ i , f ) ,  

which satisfies the first-order shock condition Po = 0 at q1 = f 2 .  Corresponding 
results for the streamline displacement and shock position are 

(6-3) 

Finally, p1  can be obtained for (6.2) in the form 
- 
pi = Qi (zi, xi) - Qi (51 - f221~1, xi) + H(zi, 51, xi) - H(% - Q22,xi, 21, XJ 

+4Q(% - Q;xl,xl) + 2QlAl(f) - ~ / ( Q , X ~ ) ~ ,  (6.5) 

where the undetermined function Q1 is the complementary solution, and the last 
three terms are due to the non-homogeneous first-order correction in the shock 
condition. The function H is a particular solution. We shall forsake the details 
of H ,  except to mention that its form, like the G of (4.14), is chosen so that H 
vanishes at yl = 22 and is finite for unbounded s. 

In the intermediate region, y+ is of order unity and it can be shown from (2.1) 
that (ap/ayyc) = O(e8). Thus by matching with the outer region, the pressure is 
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uniform and determined by the inner limit of subject to an error O(&. With this 
for p and the particle-isentropic condition to determine the density, one obtains 

(YP) = t + 1 / ( %  + @o + 301g+0 + m 1  + a 7 + 0  

which matches with the outer-region solution. 
In  the inner region, the variable 6 is used instead of Y, and the pressure 

gradient is exponentially small. With the particle-isentropic condition, and the 
boundary condition (2.3), (2 .4)  yields 

[2  + €4 In 2 + O ( E ~ ) ]  < 
2 t p  +€*po(s,f, o)+€l)l(s,z, O)+O(€$)]  

Comparing the inner limit (Y,+ 0) of (6.6) and the outer limit (6-t 1) of (6.7), the 
matching between the intermediate and inner regions is accomplished provided 

F O  + go + 1)0/(2~)Ia+0 = 0, I 

which corresponds to (4.20) in the plane case and may be identified with tihe 
pressure-volume relation of Cheng & Kirsch (1969). Equations (6.8) perform 
the role of inner boundary conditions to determine the functions Q ,  Q,, A ,  and B,. 

Applying (6.3) and (6.4) to the first of (6.8) yields a linear integral-difference 
equation, which can be reduced to a D.D.E. comparable to ( 5 . l a ) :  

Q"(s, H )  - Q"(s - f2 /x1 ,  t") + ( 2 f / 4 )  [&'(a, %) + &'(s - H2/x1, t " ) ]  = 0. (6.9) 

The latter admits, quite similar to the plane case, a solution of the form 

&(s, t )  = C, ( t " )  eiais + D, (f) (6.10) 

provided that 2xl/a1 = tan (&xlQ22,~,). (6.11) 

Through the integral-difference equation, the functions A ,  and B, are related to 
the functions C, and D, as 

A,($)  = -(Z/SzJD,(%), B,(t") = Hol(f)-i(2/alQl)C,(f). (6.12) 

Parallel to the development in the plane case, (6.11) and the definitions of a, 
and x, determine the transform function wf t ) :  

where ,u(E) is the same function given by (5 .5)  with n = 0. 
From the second of (6.8), inner boundary conditions for the pressure in 

precisely the same form as ( 5 . 7 ~ )  can be obtained, into which the results of 
(6.5) and (6.10) are substituted, to yield 

&'i(s, XI) -&';(s- Q22,~1, XJ +2x l [Q; ( s ,  XI) +&;(s- xAI 
= -@(XI) + eials   XI) (dC1/dxl) + M(xl) c, + N(xl) CIDl> + K(xl) Q22, ei2zls, (6.14) 
17 F L M  48 
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where E ,  L, M ,  N and K are known functions of the slow variable x,. The right- 
hand side of (6.14) has three types of terms according to their functional de- 
pendence of s. The first type is independent of s and induces a particular solution 
for Q1 proportional to s. The second type is proportional to eials and leads to 
the resonant solution for Q,. The third type arises due to the non-linear effect 
and leads to an oscillatory solution proportional to eiaals. In  order to keep 
Q, bounded, we set both E(x l )  and the sum inside bracket { }  equal to zero, 

(6.15) 

Unlike the function D in (5.11) for the plane case, D, will influence the physical 
quantities through C, and hence must be completely determined. It can be 
shown, however, that the integration constant D,, is to be matched to a non- 
existent perturbation of the order & in the incipient-transition period; therefore, 
D, must be taken to be zero identically. 

The determination of C,, i.e. the second of integration of (6.15) and the 
matching with the large-time behaviour of the finite-time solution (2 .7) ,  follows 
that in the plane case. The solution yields the surface pressure in the principal 
transition period 

[ ( p ~ ~ ) / ( p ~ b ~ ) ] ~ _ , ,  = 1 - ~ * 4 A ~ e - ~ l ( f i f , u ~ ( l  +p2)]-*cos [u1(f)t+q5,]+O(~), (6.16) 

which, like the plane case, contains the incipient-transition solution ( 2 . 8 ~ )  (to 
the first perturbation) as can be shown. Toward the end of this period, (6.16) gives 

t +-+#, +O(s), f-tco. 

(6.17) 

[ ( p ~ ~ ) / ( p , b ~ ) ] ~ + , ,  = 1 - d 4 A 0 ( 2 f 2 / ~ ) - ) C O S  [3((i)”3 :4 ] 
7. Discussion of final results 

7.1.  Transition curve for surface pressure 

To illustrate the complete transition, we give in figures 2 and 3 the pressure on 
contact surfaces gc cc t in planar and axisymmetric cases, which are computed 
from (5.18) and (6.16) for a value of E = + (i.e. y = +). The results of the earlier 
period are shown (in fine line) as & = pc/pm pz us. t ;  to facilitate comparison, the 
transition solutions (in bold line) are presented in the same variables. The need 
for taking s to a specific value follows from the two-time character of the solutions, 
which precludes the possibility of scaling out E entirely from the computed 
results. It may be pointed oub that the constants of integration for the transition 
solutions cannot be arbitrarily adjusted, buh are determined by the constants 
A,  and 4, of (2.7) associated with the earlier period. 

The existence of an overlapping range for the two solutions is evident from 
either figure. Compared to the earlier period results, the oscillations in the 
transition solutions give much smaller overshoots and undershoots and approach 
the asymptotic limits much sooner, bearing out the terminal behaviours (5.21) 
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FIGURE 2. An example of the surface pressure history in the planar case of y, cc t with 
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and (6.17). We note that corrections to the transition solutions in the next 
order, which are O ( d )  for v = 0 and O(s4) for v = 1, are needed for a consistent 
match with the second-order solutions of Cheng & Kirsch (1969) and Kirsch 
(1969). A direct comparison of the present leading-order results with numerical 
characteristic solutions for s = + (Cleary & Axelson 1964; Cleary 1965; 
Henderson et al. 1966), is therefore not too meaningful at this stage and is 
omitted here. 

7.2. Comparison with a shock acoustic-wave interaction analysis 

The final approach given by (5.21) and (6.17), i.e. written in t ,  can be combined 
in a form which also applies to the spherical case 

where A(v), K,, and L, are constants independent of e. Thus, near the end of 
the transition, the oscillation period increases with t like 4&/( 1 + v )  and the 
amplitude decays like t -4(4+3~) .  The decrease in the period with the index v 
shown above could have been inferred from an examination of the frequency 
of acoustic-wave reflexion between the shock and piston, ignoring the entropy 
wake. In  the Newtonian limit, the distanue between the strong shock and the 
driving piston yc cc t is eye/( 1 + Y), it follows that the period for a complete re- 
flexion of the acoustic wave is precisely 4dtf ( 1  + v). 

In  the absence of the enbropy wake, i.e. without the initial explosion, the 
acoustic reflexion problem last mentioned is, of course, equivalent for the planar 
case, to the classical problem of shock/Mach-wave interaction in a supersonic 
wedge flow treated previously by Lighthill (1949),  Chu (1952), and Chernyi 
(1959). Although not explicitly brought out by these authors, the problem 
admits, at large time, a family of oscillatory eigensolutions 

pc cc t-As t-a+ibn (7.2) 

where A ,  are complex exponents. This form was discovered by Ellinwood (1967) 
in his study of asymptotic hypersonic flows of blunted wedges and blunted 
cones; Ellinwood’s basic model leads to inconsistent results for blunted cones 
and its full validity may be questioned, but the reduced equations solved are 
precisely those for the shock/acoustic-wave interaction (without the initial 
explosion) cited.? In  the Newtonian limit, the exponent A, of (7.2) can be 
obtained, for yo cc t, as 

A, = - 4 ( 4 + 3 v ) + i & ~ ( l + 2 n ) / d  (n = 0,1,2,3,4,  ...). (7.3) 

Thus the oscillatory decay of the present solution, (7.1), agrees with the large- 
bime eigensolutions of the shock/acoustic-wave problem, but the comparison 
shows that only the fundamental mode of (7.3) is excited.$ It should be pointed 

tLarge-time eigensolutions of the type (7.2) has also been studied recently by 
Stewartson & Thompson (1970) for a pure blast wave (y, = 0). 

$ The second mode corresponding to rr = 1 may be seen to tie up with the term pa 
appearing in (4.20), (6.2) and (6.8), which is seen to enter in the next approximation for 
the cylindrical case. 
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out that (7.2) and (7.3) give no preference to any particular mode, since the 
exponent oft in the amplitude is - &(4 + 3v), independent of n. For this reason, 
(7.2) and (7.3) constitute no valid evidence of an oscillatory decay (inasmuch 
as a non-oscillatory function may submit to the Fourier a,nalysis). 

Although the validity of the present solution at large f could be established 
through demonstrating regularity in the higher-order expansions, the foregoing 
discussion has left little doubt of its uniformity concerning the amplitude and 
frequency. It is interesting to note that, according to Schneider (1968), Chernyi's 
(1959) solution for yc cc t in the planar case should behave at large t like 
t-8 cos (In t/s* + const.), which may be compared with t-2 COB (n-ln t/2e*+ const.) 
from (7.1). 

8. Concluding remarks 
The foregoing analysis yields a description of the successive stages in which 

the shock layer produced by a point explosion reattaches to a driving piston; 
this, together with the earlier analyses (Cheng & Kirsch 1969), completes an  
approximate, but uniformly valid, dynamical picture of the problem studied. 
For the case yc oc t analysed, the principal t.ransition occurs in t" = sl/(l+v)t = O( 1) 
where the solution has a three-deck construction. The analysis shows that the 
dynamics of the transition is dominated by an oscillation subject to modulations 
in both amplitude and frequency. In  an interval of small t corresponding to 
1 < t < ~ - ~ / ~ ( l + ~ ) ,  the perturbation solution decays like l/t%3+') and oscillates 
with a frequency (27r)-l(l+ Y) t-@+), matching and confirming the earlier 
results of Cheng (1960) and Cheng et al. (1961). At a t" sufficiently large, the 
amplitude decays more rapidly as ~ - g t - ! d ~ + ~ ~ ) ,  and the frequency reduces further 
to &r( 1 + v) s-it-l. This terminal behaviour is identified with the asymptotic 
form of a fundamental acoustic mode found in problems without explosion. 

Unlike the analysis for the earlier period (Cheng & Kirsch 1969), the arena 
for the present analysis lies in the outer shock layer which, in the period under 
study, is found to be governed basically by an acoustic equation. The essential 
ingredient, which distinguishes the present analysis from a standard acoustic 
problem, are fed by the entropy wake. The wake imposes a singular, two-time 
character to the 'initial data', (2.7), and furnishes an inner boundary condition 
to the outer shock layer, as if it were a compliable surface. From the viewpoint 
of the Newtonian theory, the recovery of the acoustic equation is significant in 
revealing that the Busemann pressure formula tends to exaggerate the particle 
acceleration and is inadequate in describing certain important details of the 
reattachment. 
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